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We study the application of the methods developed in the eiectrodynami~ of 

stochastic media and adapted to the quantum field theory p* 21, to the equations 

of the dynamics of an elastic medium. The method in question does not impose 
the usual restrictions of smallness on the magnitude of the fluctuations of the 

elastic mod&. Separation of the singular part of the Green tensor 0, 3, 41 and 

the introduction of new field variables, is equivalent to the summation of the 

quasi-static parts of the elastic moduli. Application of the dis~~tinuo~ Weber- 
Schafheitlin integrals [5, 6 J makes possible the accurate computation of the Born 

approximation. This brings to light various effects characteristic for the media 

possessing a structure l7]; when the dispersive properties can become disconti- 

nuous, resonant phenomena arise at the wavelengths comparable with the dimen- 
sion of the structure. For a strongly isotropic medium [8] and an exponential 

correlation function, we give explicit expressions for the macroscopic elastic 
coefficients and for the eigenvalues of the operators. 

The methods of computing the static macroscopic coefficients were developed 

and used by many authors (see e.g. [3, 4, 9, lo]). Under certain assumptions 
made about the mean stress-strain state and the texture of the medium, the ope- 

rator relations ~nnecting the average fields became, generally speaking, algeb- 

raic, When the dynamic effective parameters are computed. the relations appear- 

ing also have a non-local character and this complicates the dispersion equations 

considerably. In [ 12 -141 the authors had computed, for the Born approximation, 
the macroscopic coefficients for the case of long and short waves when the spa- 

tial dispersion could be neglected. 

1. The displacement vector ui of a harmonic wave in an inhomogeneo~ medium, 
satisfies the equation 

&jklUk, l)vj + PI@‘U~ = 0 (1.1) 

Here hijkl (r) depends on the spatial coordinates in a random manner, p0 is the den- 
sity, o is the frequency, while the stresses and strains are connected by the Hooke’s law. 

Writing the equation (1,l) for a homogeneo~ medium with parameters hijrrO and po, 
subtracting it from (1.1) and performing simple manipulations. we obtain 

Here ZLi3 denotes the displacement field and Gi, (r - rl) is the dynamic Green ten- 

sor in the homogeneous medium in question. Separating the integral in (1.2) into its 
singular and regular parts, we arrive at the new field quantities 
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Eim = G, m - S Gif,'mj(r - rl) 7njst (rl) E,t (rl) dr 1 0.3) 

Eirn = BirnktUk, 17 rnjst = G~~fGs:,t CL 4) 

B imkl = &k&l + G!?. m&jkr 

where Yn jst is the polarization tensor, Gin(s) is the singular and Gin(n) the regular 

part of the Green tensor. The passage to the new variables Et, and ‘ynjst is equiva- 
lent to the process of summing an infinite series for the quasi-static part LijAl (0, k) 

of the Fourier transform of the effective elastic moduli tensor. 

Solving Eq. (1.3) by consecutive iterations, we obtain a series in powers of ?)ltjst. 

Averaging this series and utilizing the Feynman diagrams summation method, we can 
write the following Dayson-type (1, 21 equation for the average field (Eim) : 

CEim> =uiO,m + 11 G:)mj (r - rd Qnjst @a--- rl> (E,t (rl)) drldrz 0.5) 

The effective tensor $,jst is given by the relation 

(TnjstEst) = rnjst <E,t) = 5 r& (r - rl) (E,t (r& dr, 0.6) 

The kernel y&t is connected with the mass operator Qfijst by the relation 

rZ&jst (r - rl) = - Qnjst (r - rd 
Qnjst (rl - rd = (~jd2 @I) Tprst (E& Gdp, r&“l - rs) 

(1.7) 

The series considered in the present method converge most rapidly, when 

%Iist> = 0 (1.8) 

The relations (1.8) yield a closed system of equations for determining the auxilliary 

coefficients in hi jk 1’ in terms of the moments hijkr. The physical sense of Eq.(1.8) 

is clear, and the conditions of convergence of (1.8) do not impose any restrictions on the 

magnitude of the fluctuations of hijk [. 

Let us write the relations connecting the old and new variables 

Eim = [&k&r + G~~~~j~~jk~] UQ~ 5 B~~k~U~, l 

~~j~~~~~ = ~~j~~B~~~B~~~tu~,~ = ~~j~~Uk, t 

Averaging (I. 9) and (1.10) we obtain 

CE,,) = L&&j $_ GIi: mj (&jkr - hijkl)] (up, 1) (1.11) 

r njim (Eim) = (&jr, - Gjkl) (U&, I) (1.12) 

Substitution of (1.11) into (1.12) yields 

r njim I&k&r + GtS’ m,mj (4&I - h&l)1 <%,I> = (L&i - h&l) <uk,I) (1.13) 

The tensor &jkr* is given by the relation 

(Q) = &jkl (uk, i) = f Cjk* 0. - 5) C&k, i @I)) dri 

Let the system under consideration be statistically isotropic and homogeneous. We 
consider the average displacement fields of the form pirr . The relations (1.13) can 



now be written as 
Dnjim [6jk&t + G!‘:, >lli, (L,,@/il - hiqA-l)] -= &jhl - ?Vlh_i (1. 14) 

Here I),)iirn lo, h) and Ll,jkl (CO, 1~) are the Fourier transforms of the kernels of 
the operators l’(njim and iZ,ljh I. Solving (1.14) for rJ,ljk l we obtain 

.Lstk[ z hitk[ + M~~~jD~Lj/il (1.15) 

111 ptlqj ==I 6,,,6,~ - QJimG?~,~11~ 

2, Let us turn our attention to finding the auxilliary coefficients. Let the medium 
defined by h&r be isotropic and homogeneous, and let the inhomogeneo~ medium be 

The relations (1.8) give, in the isotropic case, two equations for determining h,,, p-i0 
and (K,,, p(,) in terms of the moments h and p (K, p). Assuming a definite law of 
distribution of ?b, p and B, we can calculate &,, pC, and h’, in the manner analog- 
ous to that of Cl]. For the composites and polyuystals we obtain self-consistent field 

equations. 
Equations (1.8) and (2.4) can be solved by consecutive iterations without concretizing 

the mode of distribution. In the zero approximation we obviously have 

In the first approximation 

Ic(o1) _= (K) - .\&) < K’“) -\- go, (K’“) - . . . (2.5) 

PO 
‘If := (p) - JI,,j (IL”) -k i%Jtoj (CL”) - . . . 

.I(()> =; (h + 2py1, M,,, = 2 (3 -+ 811) [15 (pj (h -!-2p)1-r 

The values of h @I PO and (K,, pO) obtained in this manner, can now be substituted 
in all the above tormulas. 
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3, bet us compute the second term of the formula (1.5). From the relations (1.5)- 
(1.7), with (2.1)-(2.4) in the Born apprtximation in ~+,ik I taken into account, it fol- 
lows that the expression for the kernel J’njva (r - rr) has the form 

7&s@ - r.1) = ~l*wLj~,s + TZ'(P)(S,,6jS + 6,&y) + (3.11 

73, (PI (~~j~Yn~ + &S&&j) ?r 74’ (P) (Snuqns + 

&snjn, + &ja%% + ~j&&) -t Tril (p) nnnjnvns 

P = I r - 5 1, ni = pip-’ 

rm* (P) = R(p) {y ZfXiP + ~~~~(~~P)~~~U~~~~} 

AI = 42, - ktp2, B, = ka4p4 - 24ika3p3 - 12z,, AZ = 2zt 

B 2 = 4 (32, + b2p2), A, = 2A,, A4 = - (32, + kt2p2) 

& = - 2 (302, + zar2ka2p2 + ka4p4 + 10ika3p3), A, = 0 

B, = 4 (6z,k,2p2 - 152, - 5ika3p3), B, = 180k,2p2z, - 

4202, + 4k,‘p4 - 140ika3p3, z. = ilc,p - 1 

If (k&h’ = ~(k~p) - f (ktp), kcx2 = 5, et2 = + 

ho + 2Po Cl2 = - , 
PO CY7& (rl) Y~PYS (r2)) = R (P) X$Z 

The eigenvalues of the operators I’njim and Anjkl can be 

Dnjus (0, k) = 1 rljy8 (p) e-ikPdp 

Ljyg(m,k) = SG~~s(p)e-ikPdp 

found from the formulas 

(3.2) 

Passing in (3.2) to the spherical coordinates, we perform the integration over the angles, 
The integrand expressions are then transformed into the Bessel functions with half-integ- 
ral indices and we obtain the dis#ntinuo~ Wear-Scha~eitlin and Sonine-Gegenbauer 
and Bailey integrals. Moreover, we regularize the integrals using the recurrence formu- 
las fcr the Bessel functions. The computations are carried out for the correlation func- 
tion R (p)= R. exp (--Pi / a$ai denote the correlation radii). The expressions for 

D njys (0, k) and Lnjkl (w, k) also have the form of isotropic tensors 

D njyS (~3 q) = DI (0, q)6,& + D, (0, q)(e,yaja + 6,,sahfr) -t_ (3.3) 

Ds (0, q)@,jw + &e,lj) t Da (0, q)(bjse,e, +hj,e,,ea + 

bejeT + 6, ,qed + D, (0, q)e,eje,eb 

et = qiq-‘, q* = k2 -f a-2, a2 = UiCli 

Let us write the explicit expressions for D1 and D, corresponding to the case of a 
strongly -isotropic medium 
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Depending on the relations between k; and Q, we obtain the following four different ex- 
pressions for the coefficients of the polarization D, : 

1) q <kl, za = qk,‘, z -=1,t 

r$) = 0,n =+ 4,7,14,17, r',? .= o,p=+i12,3,4,7,i4,i7 

r(n)= 0 a=+ 14,15, 21 9 r$) = 0 p+ 1,3,i4,i5, 7 12; - 1:; = 0 

2) q = k,, za = klk;’ 

r$=o 

3) k!<s.&t 
n#h3,14,15, ma l(l) =3 I@) = o me , I-J, = ( f t 

I?$)= 0, ?2#4,9,10,16, r$"=O, p+i,2,4,12,14,17 

r$)=o , +a 13 16 18 T f , , r$)--0 - 3 p+i 3 15 f, 2 r$ -:= #z. 0 

41 kr<q 
I$’ = 0, n # 4,8,10,16, l?$‘=O, p+4,5,6,8,10,16 

r$)=O, n+li,13,16, r;?=O, p#5,6,11,13,16 
fig = rg&J zzz 0 IE#Oo, Igj#O 
I(l) 
* = 596 - i9q4k,” + 211q2ku4 - iilkas 

pa- _ = 5qa - 9q4ka2 f 119q2ka4 - 6ika6 

Here the coeffxcients rz are expressed, with (3.1) and (3.2) taken into account, in 

terms of the hypergeometric factions F (a, p, y, Z) in accordance with the Weber- 

Schafheitlin formulas [6]. The structure of the expressions for I)s, D, and Bs is ana- 

logous to that of D, and D,. 
Let us note the following. Use of the discontinuous integrals in our computations 

makes it possible to obtain exact expressions for D, (0, q), and the relation connect- 
ing the wavelengths of the average and initial fields with the correlation radius, is the 
essential one, Study of the convergence of the hypergeometric functions shows, in the 

present case, that F (a, p, y, 2) converge wherever CC + 6 - y < 0, and diverge 
at z = 1,if O<a-l-p - y < 1. Thus the dispersion relations become disconti- 
nuous at Q = kf and g = k,. The asymptotic forms of the expressions for n, (CO, g)l 

are obtained. in the case when the spatial dispersion is neglected (nq <, 1, ag >i $1, 
from the above relations with kt, k, < q. With Da/k, known we can compute L,j,T r7 
and the strongly isotropic field f) II j rt f has the corresponding strongly isotropic field 

L,, jhi, tet us write the explicit expressions for L,, I,, and L in terms of Dr, D, and 
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D in the strongly isotropic case 

L,=I”o+i_;&D 7 L,=h,$L-+LL, (3.5) 
12 

L=&+D 
I- 2Gf)Dz 2GtS)Dz 

I- 3 (Gf’ + 3Gt)) D + 
1 

1-2Gf)& 
I 

The formulas (3.5) which give the eigenvalues of the effective elastic operators enable 
us to compute the velocities, the decay, the effective scattering cross section and other 

macroscopic coefficients of the medium in question. 
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